3.121 \(\int \frac{A+B \sin (e+f x)}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=175 \[ -\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}+\frac{(5 A+B) \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{8 \sqrt{2} a^2 c^{3/2} f}+\frac{(5 A+B) \cos (e+f x)}{8 a^2 f (c-c \sin (e+f x))^{3/2}}-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}} \]

[Out]

((5*A + B)*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(8*Sqrt[2]*a^2*c^(3/2)*f) + ((5
*A + B)*Cos[e + f*x])/(8*a^2*f*(c - c*Sin[e + f*x])^(3/2)) - ((5*A + B)*Sec[e + f*x])/(6*a^2*c*f*Sqrt[c - c*Si
n[e + f*x]]) - ((A - B)*Sec[e + f*x]^3*Sqrt[c - c*Sin[e + f*x]])/(3*a^2*c^2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.391888, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {2967, 2855, 2687, 2650, 2649, 206} \[ -\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}+\frac{(5 A+B) \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{8 \sqrt{2} a^2 c^{3/2} f}+\frac{(5 A+B) \cos (e+f x)}{8 a^2 f (c-c \sin (e+f x))^{3/2}}-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

((5*A + B)*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(8*Sqrt[2]*a^2*c^(3/2)*f) + ((5
*A + B)*Cos[e + f*x])/(8*a^2*f*(c - c*Sin[e + f*x])^(3/2)) - ((5*A + B)*Sec[e + f*x])/(6*a^2*c*f*Sqrt[c - c*Si
n[e + f*x]]) - ((A - B)*Sec[e + f*x]^3*Sqrt[c - c*Sin[e + f*x]])/(3*a^2*c^2*f)

Rule 2967

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rule 2855

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[((b*c + a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p +
1)), x] + Dist[(b*(a*d*m + b*c*(m + p + 1)))/(a*g^2*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x]
)^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 2687

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Simp[(b*(g*
Cos[e + f*x])^(p + 1))/(a*f*g*(p + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(a*(2*p + 1))/(2*g^2*(p + 1)), Int[
(g*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[p, -1] && IntegerQ[2*p]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \sin (e+f x)}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^{3/2}} \, dx &=\frac{\int \sec ^4(e+f x) (A+B \sin (e+f x)) \sqrt{c-c \sin (e+f x)} \, dx}{a^2 c^2}\\ &=-\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}+\frac{(5 A+B) \int \frac{\sec ^2(e+f x)}{\sqrt{c-c \sin (e+f x)}} \, dx}{6 a^2 c}\\ &=-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}}-\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}+\frac{(5 A+B) \int \frac{1}{(c-c \sin (e+f x))^{3/2}} \, dx}{4 a^2}\\ &=\frac{(5 A+B) \cos (e+f x)}{8 a^2 f (c-c \sin (e+f x))^{3/2}}-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}}-\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}+\frac{(5 A+B) \int \frac{1}{\sqrt{c-c \sin (e+f x)}} \, dx}{16 a^2 c}\\ &=\frac{(5 A+B) \cos (e+f x)}{8 a^2 f (c-c \sin (e+f x))^{3/2}}-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}}-\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}-\frac{(5 A+B) \operatorname{Subst}\left (\int \frac{1}{2 c-x^2} \, dx,x,-\frac{c \cos (e+f x)}{\sqrt{c-c \sin (e+f x)}}\right )}{8 a^2 c f}\\ &=\frac{(5 A+B) \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{8 \sqrt{2} a^2 c^{3/2} f}+\frac{(5 A+B) \cos (e+f x)}{8 a^2 f (c-c \sin (e+f x))^{3/2}}-\frac{(5 A+B) \sec (e+f x)}{6 a^2 c f \sqrt{c-c \sin (e+f x)}}-\frac{(A-B) \sec ^3(e+f x) \sqrt{c-c \sin (e+f x)}}{3 a^2 c^2 f}\\ \end{align*}

Mathematica [C]  time = 0.881429, size = 300, normalized size = 1.71 \[ \frac{\left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (3 (A+B) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3+6 (A+B) \sin \left (\frac{1}{2} (e+f x)\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3+4 (B-A) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^2+(-3-3 i) \sqrt [4]{-1} (5 A+B) \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt [4]{-1} \left (\tan \left (\frac{1}{4} (e+f x)\right )+1\right )\right ) \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^2 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3-12 A \cos ^2(e+f x)\right )}{24 a^2 f (\sin (e+f x)+1)^2 (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-12*A*Cos[e + f*x]^2 + 4*(-A + B
)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2 + 3*(A + B)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2])^3 - (3 + 3*I)*(-1)^(1/4)*(5*A + B)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(
Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3 + 6*(A + B)*Sin[(e + f*x)/2]*(C
os[(e + f*x)/2] + Sin[(e + f*x)/2])^3))/(24*a^2*f*(1 + Sin[e + f*x])^2*(c - c*Sin[e + f*x])^(3/2))

________________________________________________________________________________________

Maple [A]  time = 1.145, size = 258, normalized size = 1.5 \begin{align*} -{\frac{1}{48\,{a}^{2} \left ( 1+\sin \left ( fx+e \right ) \right ) \cos \left ( fx+e \right ) f} \left ( \sin \left ( fx+e \right ) \left ( 15\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c+c\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( c+c\sin \left ( fx+e \right ) \right ) ^{3/2}cA+3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c+c\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( c+c\sin \left ( fx+e \right ) \right ) ^{3/2}cB-20\,A{c}^{5/2}-4\,B{c}^{5/2} \right ) + \left ( 30\,A{c}^{5/2}+6\,B{c}^{5/2} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}-15\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c+c\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( c+c\sin \left ( fx+e \right ) \right ) ^{3/2}cA-3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c+c\sin \left ( fx+e \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( c+c\sin \left ( fx+e \right ) \right ) ^{3/2}cB-4\,A{c}^{5/2}-20\,B{c}^{5/2} \right ){c}^{-{\frac{7}{2}}}{\frac{1}{\sqrt{c-c\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x)

[Out]

-1/48/c^(7/2)/a^2*(sin(f*x+e)*(15*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*(c+c*sin(f*x+e))
^(3/2)*c*A+3*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*(c+c*sin(f*x+e))^(3/2)*c*B-20*A*c^(5/
2)-4*B*c^(5/2))+(30*A*c^(5/2)+6*B*c^(5/2))*cos(f*x+e)^2-15*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/
c^(1/2))*(c+c*sin(f*x+e))^(3/2)*c*A-3*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*(c+c*sin(f*x
+e))^(3/2)*c*B-4*A*c^(5/2)-20*B*c^(5/2))/(1+sin(f*x+e))/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.81056, size = 560, normalized size = 3.2 \begin{align*} \frac{3 \, \sqrt{2}{\left (5 \, A + B\right )} \sqrt{c} \cos \left (f x + e\right )^{3} \log \left (-\frac{c \cos \left (f x + e\right )^{2} + 2 \, \sqrt{2} \sqrt{-c \sin \left (f x + e\right ) + c} \sqrt{c}{\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) +{\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \,{\left (3 \,{\left (5 \, A + B\right )} \cos \left (f x + e\right )^{2} - 2 \,{\left (5 \, A + B\right )} \sin \left (f x + e\right ) - 2 \, A - 10 \, B\right )} \sqrt{-c \sin \left (f x + e\right ) + c}}{96 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/96*(3*sqrt(2)*(5*A + B)*sqrt(c)*cos(f*x + e)^3*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*
sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 2*c)/(cos
(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*(3*(5*A + B)*cos(f*x + e)^2 - 2*(5*A +
B)*sin(f*x + e) - 2*A - 10*B)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^2*f*cos(f*x + e)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

sage2